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The Boy Surface as Architecture and Sculpture 
 
 
 

C.P. BRUTER 
ARPAM, Gometz-le-Chatel, France 

 
I will discuss the architectural structure of a folly in the Arpam project generated by the Boy 
surface. The classic way to build the Boy surface will be recalled with a few qualitative 
observations. I will also discuss four sculptures related to the Boy surface that illustrate 
various aspects of knot theory. 
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AMS subject classification : 53A05, 55R05 
 
 
 
1 Introduction 
 
 According to [14], Jean-Pierre Petit had suggested to the French artist Max Sauze a 
sculpture of the Boy surface. Petit’observations have been developed and expressed in fine 
mathematical terms by François Apéry [1] [2]. From the equations he established, François 
has produced several shining wire models of the Boy surface (a photo of the first one can be 
viewed in [3] ;  we can look here at a photo of the most recent one). Apéry’student in Cagliari, 
Gregorio Franzoni, has made a similar model in Teflon. Several beautiful classical views of 
the Boy surface can be seen on Internet. Wikipedia gives a recent (2008) good animation 
showing its construction, it seems to be inspired by the static visual construction given in [17] 
(via the cross cap and the Roman Steiner surface); this web site also shows a wire sculpture in 
Oberwolfach. Classical visual and mathematical presentations of the Boy surface can also be 
found in the nice books by Anatoli Fomenko [8] and George Francis [9]. Polyhedral 
constructions of the surface have also recently been made by Ulrich Brem [5], Richard 
Denner [7], Rob Kirby [12], Konrad Polthier through an animation [16].  

In this article, for the readers not familiar with this surface, I first recall the classical 
way to build it - to attach a 3-Möbius band to a 2-disk - then add a very few qualitative 
observations.  

In the late sixties the Boy surface was used to obtain an eversion  process for the 2-
sphere. I will use the Boy surface to design an architectural project associated with the Arpam 
project [4]. 

 
Recall that the Arpam project proposes to construct several small buildings, referred to 

as follies, in a large verdant park. Each folly will illustrate mathematical concepts of a 
particular chapter of the mathematical universe. 
 
              The Boy surface will be used to generate the structure of a folly. Four knotted 
sculptures will be placed in the vicinity of the folly, where one knot sculpture will be related 
to the Boy surface. 
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2 What is the Boy surface 
 
2.1 Notion of projective space 
  

Light has played a fundamental role in the evolution of our world. Sunlight has 
brought the energy which has permitted the birth and the unfolding of the life. Through the 
perception and the vision of objects and their shadows, it has allowed the creation and the 
development of classical geometry. 

 
 If one considers a beam of parallel rays of light which projects the shadows of objects 
on the ground, its most primary and significant characterization is the direction of these rays. 
It can be considered as an abstract line in space. This direction varies during the day 
according to the physical source we have in the hand. 
 The set of all these directions of light in a given milieu according to which one can 
produce shadows is called a projective space attached to this milieu. 
 The projective space attached to our usual space R3 is usually denoted by RP2 or P2. 
  
2.2 A class of representations of P2  
 
 Let us consider a 2-sphere as a representation of the canopy. Any line through the 
centre of the sphere represents a ray, a direction of light coming from a star considered as a 
punctual source of light. This line crosses the sphere in two antipodal points (symmetrical 
points with respect to the centre of the sphere. We identify these two points as one point and 
the set of these identified points is a representation of projective space.                                                                   
 
            If we remove the equator, the sphere is divided into an upper and a lower open 
hemisphere( Figure 1). By pushing them on a plane, we get that these upper and lower parts of 
the sphere are topologically equivalent to an open 2-disk, that is a disk without the circle 
which bounds it. In that case, the identification of the antipodal points of these two parts is 
immediate : we get a surface which can be one of these parts, an open 2-disk. 
 
 

 
Figure 1 

 
But now we have to deal with the equator. After a while of unsuccessful search, you 

may remember a previous process of identification which you can view as a process of 



 3 

identification of antipodal points : the construction of a Möbius band. Take a small strip of 
antipodal points on the sphere and any two antipodal points P and P’ (Figure 2). Cut the strip 
in P’ say (Figure 3), and make an half turn of the strip (Figure 4) so that P and P’ are glued 
into one point : one gets the Möbius band (Figure 5).  

 

 
 

Figure 2 : Two antipodal points on the circular strip around the equator 
 
 
 

 
                    

Figure 5 : The classical 1-Möbius band got by an half-turn of the original strip 
 
 
 
Now we can get a representation of P2.  Divide the sphere into three parts : a small 

strip along the equator forming a neighbourhood of this equator, the remaining upper and 
lower parts of the sphere. The circular strip is bounded by two symmetric circles belonging  to 
the strip, an upper one and a lower one. The upper and lower parts of the sphere are also 
bound, each one, by a similar circle. By glueing the upper and lower parts of the sphere to the 
strip along their common upper and lower boundaries, the sphere is build again. 

But if we identify the antipodal points of the so divided sphere, we get a disk and a 
Möbius band together with their boundaries. If we attach the two surfaces by gluing their 
boundaries, we get a complete representation of the projective space. 
 
 In the previous construction of the 1-Möbius band, the initial strip had been half 
turned only one time (Figure 6). But let us remark that if one makes three half-turns, more 
generally an odd number (2p + 1) of half-turns, the points P and P’ can always be identified, 
which is impossible if this number of half-turns is even (Figure 7). Thus we get the (2p + 1)-
Möbius band. 
 

P’ 
          Figure 3 Figure 4 

P 

P’ 

P P’ P 
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The 3-Möbius band is a two times covering of a 1-Mobius band 
 
 

The original Boy surface, the 3-Boy surface, was created in 1901 by using the 3-
Möbius band (Figure 8). If  the strip had been turned (2p+1) times, we would have got a 
“(2p+1)-Boy surface”. It could have be named a “(2p+1)-Möbius surface” since, in 1874, 
Möbius created the first representation of P2 using a 5-Möbius band over a cone. But almost 
thirty years later, contradicting a conjecture by Hilbert, Boy showed that his surface is an 
immersion of P2 into R3. 
 

Let us look at the boundary of a 3-Möbius band (Figure 9, right) :  
 
 

                                                                      
 

 
Figure 9 : The boundary of a 3-Möbius band (right) 

 
We see that it is a trefoil knot. As the following picture shows (Figure 10), this knot 

can be imbedded into R3 in such a way that the three leaves are in general position (here each 
leave belongs to a plane of an orthogonal frame of  R3). 
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between P and P’ by gluing the 
two vertical lines 

  Figure 6 

Figure 7 

Figure 8 
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Figure 10 : Real Matrix 1, Jos Leys,  50 x50, 2006 
 
 

 Now let us go back to the construction of the 3-Boy surface. Consider first the 3-
Möbius band forming the neighbourhood of the equator. We can give it a shape following the 
trefoil contour which we can see on the image. As the size of the neighbourhood decreases, 
the torsion of the leaves is getting lower, so that in the final state, the trefoil becomes the 
boundary of a 3-propellar curve (Figure 11) whose three fans are topological circles, each one 
being located in an orthogonal plane of the frame of the space. They meet in one singular 
point, the origin of the frame. This propeller curve is a representation of the equator after 
identification of its antipodal points. We have thus to give to our 3-Möbius band a shape 
taking into account the fact that its “axis”, the equator, is a three propeller curve. Now we can 
understand the structure of our 3-Möbius band : it is a surface foliated by standard trefoils 
except an exceptional one, the propeller. 

          
Figure 11 :The three-propeller curve 

 
  

Then we can glue the boundary of this 3-Möbius band to the boundary of the 2-disk. 
Take any meridian on the sphere : it passes through the north pole of the sphere, and reaches 
two antipodal points of the equator. It is thus converted into a curve on the surface that passes 
two times through the point of that surface representing the two antipodal points of the 
equator. 
 The propeller curve is thus a self-intersection curve of the 3-Boy surface, to which it 
can be given a nice geometric shape. Here are a few graphic works made the French team : 
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                      Figure 12                                                 Figure 13                                            Figure 14 
                   Surface de Boy                                     The Boy surface                      Ecorché de la surface de Boy                    
        Patrice Jeener, 33x25, 2003                 J.-F. Colonna, 2002, screen scale      Patrice Jeener, 33x25,  2003 
                                                          
 
 
 
 

 
 
                                                                Figure 15 
                                                  Surface de Boy, François Apéry,  30x30x30,  2002 
 
  
2.3 A few simple observations  

Let us first consider parallel sections of the Boy surface (Figure 16). One can track 
their evolution on the following figures :  
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Figure  16 : Horizontal sections of the Boy surface, Christophe Delsart, 2008 
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Note that the Apéry’s wire model lies at the singular “north pole”. It  allows us to 

interpret the Boy surface as a fiber space. Its basis is a convenient horizontal section of the 
surface : one can understand it as plane knot. There are at least two ways to look at the fibers : 
according to the first one, there are ellipses. Now, consider two infinitesimally close ellipses, 
they define an infinitesimal band : this band, which now  plays the role of a fiber, is in fact a 
Möbius band having the north pole as a singularity where the twist happens ; it induces the 
non-orientation of the surface. The usual general theory of fiber spaces does not take into 
account the intersections of the basis and the fiber. But this intersection plays a role in the 
topology of the total space. Here each fiber, say each ellipse, intersects the basis in two points 
; this property and the fact that the basis is a closed plane curve induces the presence of the 
self intersection curve in the surface. 

 The most simple and very singular example of such a situation is the 2-sphere : the 
basis is a circle, the fibers are also circles of the same size. This fiber space can be considered 
as a double covering of the 2-sphere. One can easily play with generalizations of this 
example, either to build n-spheres, or to construct other topological and geometrical 2 and 3-
dimensional objects, by deforming the various circles and knots through different local 
homotopies. For instance, the fiber can be a trefoil,  the basis might be an ellipse, and the fiber 
the apparent contour of a human face ; then we could look at this object from different points 
of views… . 

The possible symmetry group of the basis induces the same symmetry group on the 
fiber space : the sphere, the Boy surfaces and the Morin surface are typical examples. These 
fiber spaces having some local sections with singularities belong to the category of what have 
been named “mountains”.  
 
3 The stained glass folly, a short description 
 
3.1 The structure of the folly 
 Some well-chosen ellipses of the Boy surface, materialized in chrome steel, constitute 
the main part of the frame of  the folly. This one has two parts : one which is visible from the 
outside, and the other one which can only be visible from the inside of the folly. Its floor lies 
on a perpendicular plane to the axis, located at approximately one third of the height of the 
construction, starting from the singular north pole. This floor is transparent so that one can see 
the lower part of the construction from the inside of the folly. This lower part lies inside a 
cylinder plastered with broken mirrors which reflect the internal lights illuminating the frame.  
 A few Möbius bands are materialized with stained glasses. By looking up and down, 
one can entirely see them from the inside of the folly. The outside part of the folly has for sure 
three pieces, but only two of them will serve as rooms for visitors. A series of vertical arches 
in the same material as the frame will cover  the entrance of the two symmetric rooms. Here 
are a few preliminary shots of the folly (Figure 17), without any decoration, giving an idea of 
its structure. 
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Figure 17  
Preliminary images of the stained glass folly, Christophe Delsart and Yvan Ngnodjom, 2008 

 
 Convenient transversal rods to the elliptic frame will define panels and allow us to 
cover the outside part with glasses and mirrors. The elliptic curve will be replaced by a 
piecewise linear approximation. Then some of these panels will be partly stained glass 
windows showing either tilings or knots and braids with symmetries. LEDs inserted in some 
panels will follow curves from knots : their representation in space will be improved using the 
fact that the angle between two consecutive panels of glass is not flat. 
  

Beams of search-lights with convenient colours will illuminate the folly, and four 
sculptures placed around as well.  
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3.2 The four sculptures 
 
 These sculptures should relate to Boy surface, by looking at it no more as a 
geometrical object but  rather as a topological object. This surface has three visible lobes, it 
has one interior singular point, four exterior singular points : down, the “north pole”, and 
outside the submits of the three lobes. These singular points can be viewed as the centre and 
the vertices of a tetrahedron and the boundary of the Boy surface as a smooth deformation of 
a 2-sphere. 
 

The projection of the tetrahedron on the ground can be done in such a way that it is an 
equilateral triangle. 

 
  A tetrahedron will be placed in the centre of this triangle. Each of its visible faces will 
be divided into three horizontal parts lying one upon each other. In each one, one or several 
knots linked together will be inserted. They can be made with different materials. Some of 
them will be screwed so that they can be taken off and replaced by others.  

 
A sculpture conceived by Philippe Charbonneau will be placed in a back vertex of the 

triangle. It is a transparent ball made of resin or of glass, containing inside a part of a coppery 
ruled surface of degree 3. The intersection of this surface with the sphere is a double eight 
knot, that is three loops, the loop in the middle having one point in common with the left one, 
and an other point in common with the right one - this knot is the symbol of a Lens space 
L (5,1). Here is a model of  this sculpture (Figure 18) : 

 

                                               
 

Figure 18 : Ruled surface inside a sphere, Philippe Charbonneau, 9, 1987 
 

A third beautiful shining sculpture (Figure 19), made by Philippe Rips, shows a knot-
network made with triangular rods. Such a shape was created maybe first by Alan Holden 
([10], p. 125 and p.182 of the English edition, figures 171 and 243 of the French edition). I am 
indebted Jeremy Gray of the knowledge of this fact. Indeed the two realizations were made 
quite independently.  

The general starting idea was to try to relate an object to some knots that may 
characterize it. At the last ISAMA Conference in Valencia, I learned about the works of 
Dmitri Kozlov [13]. My own approach was to begin with polyhedrons. A preliminary study 
should be to know which knots can be made from a given polyhedron considering not only its 
exterior edges, but also its interior edges 

 In the present case, the idea was to look for simple knots from some of the internal 
edges of a dodecahedron.  The sculpture will be placed in the other back vertex of the triangle. 
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Figure 19 : Holden-Rips 4- Link, Philippe Rips, 15x15x 15, 2007  
 

 
The last sculpture, again made by Philippe Rips, will be placed in the front vertex of 

the triangle. It needs some preliminary comments. 
 
Along the previous program, after considering trivial knots, the following step is  to 

look for the simplest non trivial knots, the trefoils then more generally  the n-foils. Cellular 
decompositions of polyhedrons should be used in a further step. 

 As we have already seen, trefoils can be attached with frames in our space, which do 
not need to be orthogonal, in which case they are represented by three rods in general 
position. So that when one looks for trefoils created from the edges of a polyhedron, one has 
to look at trios of edges defining frames. 

 Philippe Rips, who first worked on tensegrity and tepees then on some classical 
objects, got interested in the problem. 

 
Given its complexity, he chose to work on the truncated tetrahedron : note 

immediately that it looks a little bit like the boundary of a truncated 3 Boy surface. 
 Here is this truncated polyhedron (Figure 20), with a circular hole in each face in 

order to show some convenient internal edges.  
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Figure 20 : Philippe Rips                                              Figure 21 : Philippe Ripps 

    Two internal views of  a truncated tetrahedron, up and down, 2008    The heart of the tetrahedron, 2008 
 

 
  

As one can see better from the figure 21, by a circular permutation, we get five 
internal edges from one first, joining a vertex of the polyhedron to an opposite one. We get 
three couples of edges A = (a, a’), B = (b,b’),  C = (c,c’), two edges of any couple being more 
or less parallel, so that the edges of any triple (α, β, γ) such that α ∈Α, etc, are in general 
position. Starting with the triple (a, b, c) and, in order to illustrate a self-intersection, imposing 
that any letter appears twice, we get the four triples of frames :  

(a, b, c), (a, b’, c’), (b, c’, a’), (c, a’, b’) 
 

The code of colours is here :  
a = blue, b = yellow, c = red, given rise to a trefoil coded in white. 
a’ = green, b’ = orange, c’ = violet , so that (a, b’, c’) (respectively ( b, c’, a’), (c, a’, b’)) gives 
rise to a trefoil coded in blue (respectively in yellow and red).  
 
 We can see now a few pictures of the set of the four trefoils associated with the 
truncated polyhedron (Figures 22 and 23) : 
 
 
 

     
 
 
                                                                      Figure 22 

Philippe Rips, The Treasure of the Tetrahedron, 30 x30x 30, 2008 
(middle : view from the top, left and right : front view) 
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Figure 23 

Philippe Rips, The Treasure of the Tetrahedron, 2008 
 (up or down) 

 
 
As we know, Philippe Rips likes to produce flexible objects ; his home will resist any kind of 
seism. 
 

 

 
 

Figure 24 
Philippe Rips, Rips home, 2008 

 
The man sitting is a mathematician1 thinking about the open problem of finding the equations 
of the trefoils, (right, left, linked) related to a Boy surface. 
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